INVITATION FOR QUOTATION

TEQIP-III/2019/seip/Shopping/60

11-Jan-2019

Τo,

The CONCERNED

Sub: Invitation for Quotations for supply of Goods

Dear Sir,

1. You are invited to submit your most competitive quotation for the following goods with item wise detailed specifications given at Annexure I,

Sr. No	Brief Description	Quantity	Delivery Period(In	Place of Delivery	Installation Requirement
1	Angular accoloration a and torque t	1	days)		(If any)
T	of flywheel experimental set up	L .	40	Pithoragarh	Tes
2	Characteristics of metal-oxide-	1	40	NPSFI	Yes
_	field-effect ransistor			Pithoragarh	
3	Compare the moment of inertia of	1	40	NPSEI	Yes
	a solid sphere and hollow sphere			Pithoragarh	
	or solid disc of same mass with the				
	torsional pendulum experimental				
	set up				
4	Curie temperature of the given	1	40	NPSEI	Yes
	ferrite material experimental set			Pithoragarh	
	up				
5	Dielectric constant of the given	1	40	NPSEI	Yes
	dielectric material experimental			Pithoragarh	
	set up				
6	e/m of an electron by Thomson	1	40	NPSEI	Yes
	Method experimental set up			Pithoragarh	
7	Elastic Constants/Young's Modulus	1	40	NPSEI	Yes

	of a Wire by Searle's method			Pithoragarh	
	experimental set up				
8	g by Bar Pendulum experimental	1	40	NPSEI	Yes
	set up			Pithoragarh	
9	Height of an object using a Sextant	1	40	NPSEI	Yes
	experimental set up			Pithoragarh	
10	Inverse square law of radiation	1	40	NPSEI	Yes
	using Photo voletic cell effect			Pithoragarh	
	experimental set up				
11	Kater's Pendulum experimental set	1	40	NPSEI	Yes
	up			Pithoragarh	
12	Lissajous patterns for various	1	40	NPSEI	Yes
	frequency ratios experimental set			Pithoragarh	
	up			_	
13	Measurements of length (or	3	40	NPSEI	Yes
	diameter) using verniercaliper,			Pithoragarh	
	screw gauge, and				
	travellingmicroscope				
14	Moment of Inertia of a Flywheel	1	40	NPSEI	Yes
	experimental set up			Pithoragarh	
15	Moment of inertia of an irregular	1	40	NPSEI	Yes
	body about an axis through its C.G			Pithoragarh	
	with the torsional pendulum				
	experimental set up				
16	Planck's constant and	1	40	NPSEI	Yes
	photoelectric work function			Pithoragarh	
	experimental set up				
17	To determine the frequency of a	1	40	NPSEI	Yes
	tuning fork using sonometer.			Pithoragarh	
	experimental set up				
18	To determine the Modulus of	1	40	NPSEI	Yes
	Rigidity of a Wire by Maxwell's			Pithoragarh	
	needle experimental set up				
19	To determine the Young's Modulus	1	40	NPSEI	Yes
	of a Wire by Optical Lever Method			Pithoragarh	
20	To draw the V-I characteristics of a	1	40	NPSEI	Yes
	silicon controlled rectifier.			Pithoragarh	
21	To find the capacitance and	1	40	NPSEI	Yes
	permittivity of the given material			Pithoragarh	
22	To find the refractive index of the	1	40	NPSEI	Yes
	material of given prism using			Pithoragarh	
	spectrometer experimental set up				
23	To investigate resonance in forced	1	40	NPSEI	Yes

	oscillations and to find the spring			Pithoragarh	
	constant				
24	To study the Motion of a Spring	1	40	NPSEI	Yes
	and calculate (a) Spring Constant			Pithoragarh	
	(b) Value of g and (c)				
25	To study the variation of time	1	40	NPSEI	Yes
	period with distance between			Pithoragarh	
	centre of suspension and centre of				
	gravity for a bar pendulum and to				
	determine: (i) Radius of gyration of				
	the bar about an axis through its				
	C.G. and perpendicular to its				
	length. (ii) The val				
26	To verify that fundamental	1	40	NPSEI	Yes
	frequency of vibration of a steel			Pithoragarh	
	bar clamped at one end is inversely				
	proportional to the square of its				
	length and measure the Young's				
	modulus of bar. (Electrically				
	tunning fork complete)				
27	Wavelength of Diode laser by	1	40	NPSEI	Yes
	Michelson-interferometer			Pithoragarh	
	experimental set up				
28	Wavelength of He-Ne laser by	1	40	NPSEI	Yes
	diffraction method experimental			Pithoragarh	
	set up				

- Government of India has received a credit from the International Development Association (IDA) towards the cost of the **Technical Education Quality Improvement Programme[TEQIP]-Phase III** Project and intends to apply part of the proceeds of this credit to eligible payments under the contract for which this invitation for quotations is issued.
- 3. Quotation,
 - 3.1 The contract shall be for the full quantity as described above.
 - 3.2 Corrections, if any, shall be made by crossing out, initialing, dating and re writing.
 - 3.3 All duties and other levies payable by the supplier under the contract shall be included in the unit price.
 - 3.4 Applicable taxes shall be quoted separately for all items.

- 3.5 The prices quoted by the bidder shall be fixed for the duration of the contract and shall not be subject to adjustment on any account.
- 3.6 The Prices should be quoted in Indian Rupees only.
- 4. Each bidder shall submit only one quotation.
- 5. Quotation shall remain valid for a period not less than **30** days after the last date of quotation submission.
- 6. Evaluation of Quotations,

The Purchaser will evaluate and compare the quotations determined to be substantially responsive i.e. which

6.1 are properly signed ; and

6.2 confirm to the terms and conditions, and specifications.

- 7. The Quotations would be evaluated for all items together.
- 8. Award of contract:

The Purchaser will award the contract to the bidder whose quotation has been determined to be substantially responsive and who has offered the lowest evaluated quotation price.

- 8.1 Notwithstanding the above, the Purchaser reserves the right to accept or reject any quotations and to cancel the bidding process and reject all quotations at any time prior to the award of contract.
- 8.2 The bidder whose bid is accepted will be notified of the award of contract by the Purchaser prior to expiration of the quotation validity period. The terms of the accepted offer shall be incorporated in the purchase order.
- 9. Payment shall be made in Indian Rupees as follows:

Delivery and Installation - 50% of total cost

Satisfactory Acceptance - 50% of total cost

- 10. All supplied items are under warranty of **12** months from the date of successful acceptance of items.
- 11. You are requested to provide your offer latest by 12:00 hours on 28-Jan-2019.
- 12. Detailed specifications of the items are at Annexure I.
- 13. Training Clause (if any) Yes

- 14. Testing/Installation Clause (if any) Yes
- 15. Information brochures/ Product catalogue, if any must be accompanied with the quotation clearly indicating the model quoted for.
- 16. Sealed quotation to be submitted/ delivered **THROUGH INDIAN SPEED POST ONLY** at the address mentioned below,

NANHI PARI SEEMANT ENGINEERING INSTITUTE PITHORAGARH

(Erstwhile Seemant Institute of Technology, Pithoragarh)

GIC Campus, Link Road, Pithoragarh-262 502, Uttarakhand

17. We look forward to receiving your quotation and thank you for your interest in this project.

(Authorized Signatory)

Name & Designation

Annexure I

Sr.	Item Name	Specifications
1	Angular acceleration a and torque t of	Angular acceleration a and torque t of
	flywheel experimental set up	flywheel experimental set up:
		1. Complete experimental set up. (A fly wheel
		, a stop watch, a meter rod, a vernier calliper)
2	Characteristics of metal-oxide-field-effect	Characteristics of metal-oxide-field-effect
	ransistor	ransistor: experimental set up: 1. Inbuilt fixed
		and variable power supply(DC Fixed Power
		Supply : -5V, +15V, +35V DC Variable Power
		Supply :1.5V to 14 V) 2. Toggle switch for ion
		of variable power supply. 3. Inbuilt Ammeter
		and Voltmeter (Voltmeter: 0-200V Ammeter:
		0-200mA). 4. Bread Board(Dimension (mm) :
		175 x 61 x 10 Distribution strips : 2Distribution
		holes : 200 Terminal Strips : 1 Terminal holes :
		640).5. Resistor Bank (M.F.R. 100E 1W (3 Nos.)
		M.F.R. 470E 1W (3 Nos.) M.F.R. 1K 1W (3
		Nos.). 6. Variable Resistances (5 K? Ten turn
		Potentiometer (1 No.) 10 K? Ten turn
		Potentiometer (1 No.) 5 K? Single turn

		Potentiometer (1 No.). 7. Fuse : 500 mA, slow
3	Compare the moment of inertia of a solid sphere and hollow sphere or solid disc of same mass with the torsional pendulum experimental set up	Compare the moment of inertia of a solid sphere and hollow sphere or solid disc of same mass with the torsional pendulum experimental set up: 1. 1 shaft with bracket, coiled spring, support rod and mount for test bodies 1 cross bar 2 weights, circular disc (Restoring torque of the spring: 0.028 Nm/rad Height of the torsion axle: approx 200 mm Cross bar: Length: 620 mm Mass: pprox 135 g, Weights: 260 g each Circular disc: Diameter: 320 mm, Mass: 495 g, Boreholes: 9 Borehole spacing: 20 mm) 2. Hollow Sphere and solid sphere(metal) (Diameter: 146 mm Mass: pprox 1190 g Moment of inertia: 0.51 kgm2)
4	Curie temperature of the given ferrite material experimental set up	Curie temperature of the given ferrite material experimental set up: 1.Ferri-magnetic (or ferrites) materials are complex oxides of iron and other metals. The Unit enables one to trace the B-H loop (hysteresis) of a ferromagnetic specimen using a C.R.O. A measurement of the area of the loop leads to the evaluation of energy loss in the specimen. As the temperature of the sample is increased, the area of the loop decreases. At Curie temperature, the loop becomes a straight line, indicating zero loss. Curie Temperature Kit consists of: i) Main Unit ii) Hot Air Oven with Digital Temperature Indicator &Thermocouple. iii) Ferrite samples iv) Silicon Oil 6. Ferromagnetic samples 6 pcs (60 °C \pm 3 °C and 80 °C \pm 3 °C respectively, each 3 pcs) Supply WITH without CRO
5	Dielectric constant of the given dielectric material experimental set up	Dielectric constant of the given dielectric material experimental set up: The dielectric constant is of interest particularly to the Physicists and Engineers. A simple experimental set up is designed to measure the dielectric constant of solid samples in both range- LOW & HIGH The experimental set-up consists of : i) Main Unit having audio oscillator (1 KHz), digital voltmeter (0 – 9.99 V dc), standard capacitance and electronic

		circuitry. ii) Dielectric Cells: 75 mm Gold plated brass discs (1 set) and 25 mm Gold plated brass discs (1 set). iii) Samples : Low		
6	e/m of an electron by Thomson Method experimental set up	 Range : Glass, Backelite .Hi Range : PZT DISC e/m of an electron by Thomson Method experimental set up: 1. Microcontroller based power supply instrument for CRT (Cathode Ray Tube Distance between Plates : d=1.4cm Length of Plates : l=3.23cm Distance between Screen : L=14.5cm and Plates (edge)). 2. Focusing adjustment and Intensity adjustment provided (Focusing Voltage : Variable 0 – 300V DC Intensity Adjustment Voltage : Variable 0 – 60V DC) 3. Deflection magnetometer (Deflection Voltage : Variable 0 – 50V) 4. Octal socket provided on the front panel of power supply for connecting CRT (Scale : 0 – 30cm each side CRT connection : Octal socket LCD : 16 x 2 Characters) 5. Pair of bar magnet and Compass Box (Deflection magnetometer : 0 to 90°) 		
7	Elastic Constants/Young's Modulus of a Wire by Searle's method experimental set up	Elastic Constants/Young's Modulus of a Wire by Searle's method experimental set up: 1. Searle's apparatus consists of two wires (control wire and test wire) of equal length attached to a rigid support. 2. Screw Gauge. 3. Vernier Calliper. 4. Weight: 500g (6 Nos.)		
8	g by Bar Pendulum experimental set up	g by Bar Pendulum experimental set up: 1. Bar pendulum, stop watch and meter scale		
9	Height of an object using a Sextant experimental set up	Height of an object using a Sextantexperimental set up:1. Sextant 2.Measuring tape 3. A rigid clamp stand		
10	Inverse square law of radiation using Photo voletic cell effect experimental set up	Inverse square law of radiation using Photo voletic cell effect experimental set up: 1. Sliding stand with precise measurement (optical bench length 1 meter) 2. Light Source with height adjustment (Incandescent Lamp Wattage : 100W) 3. Photo detector with height adjustable facility (Photo voletic cell), Multimeter		
11	Kater's Pendulum experimental set up	Kater's Pendulum experimental set up: 1. Kater's pendulum, a wedge , a stop watch and		

		a meter rod
12	Lissajous patterns for various frequency ratios experimental set up	Lissajous patterns for various frequency ratios experimental set up: 1. Inbuilt Sine wave Generators 2. Inbuilt DC Supply : +12 V, 500 mA 3. Signal Generators Frequency : 10 Hz to 100 kHz Amplitude : 0 to 5Vpp 4. Cathode Ray Oscilloscope 5. Lissajous Pattern Trainer Kit (Dimensions (in mm) : W 300 × D 65 × H 230).
13	Measurements of length (or diameter) using verniercaliper, screw gauge, and travellingmicroscope	Measurements of length (or diameter) using verniercaliper, screw gauge, and travelling microscope
14	Moment of Inertia of a Flywheel experimental set up	Moment of Inertia of a Flywheel experimental set up: 1. A fly wheel, a few different masses, hanger, a strong and thin string, a stop watch, a meter rod, a vernier calliper
15	Moment of inertia of an irregular body about an axis through its C.G with the torsional pendulum experimental set up	Moment of inertia of an irregular body about an axis through its C.G with the torsional pendulum experimental set up: 1. Torsional pendulum 2. Inertia Table, irregular body, regular body, stop watch, sprit level, physical balance, weight box and Vernier callipers.
16	Planck's constant and photoelectric work function experimental set up	 Planck's constant and photoelectric work function experimental set up: 1. Photo Electric cell and Light Source (Filters Colors : Blue, Yellow, Green, Red, Orange Light Source : Halogen lamp 50W)2. Optical Bench : 50cm3. DC Power Supply : 0-5V, DC Voltmeter Type : LCD Display : 3½ digit Range : 200mV – 200V, DC Ammeter Type : LCD Display : 3½ digit Range : 2 μA – 200mA
17	To determine the frequency of a tuning fork using sonometer. experimental set up	To determine the frequency of a tuning fork using sonometer. experimental set up: 1. Sonometer (One metre long, made of soft wood and well-polished. Fitted with two metre scale graduated in centimetres.) 2. Tuning fork (Set of eight, small size, made of steel, nickel plated. Frequencies are 256, 288, 320, 341, 384, 420, 480 and 512 Hz). 3. Slotted weights: 1/2 Kg set of 5 including hanger. 4. Rubber pad for tuning fork. 5. Step down

		transformer
10	To determine the Medulus of Disidity of	To dotormino the Modulus of Dividity of a
10	Nire by Maxwell's people avaging of	Nire by Mayyoll's peodle synarimental set
	a wire by Maxwell's needle experimental	whe by Maxwell's needle experimental set
10	set up	up:
19	To determine the Young's Modulus of a	To determine the Young's Modulus of a wire
	Wire by Optical Lever Method	by Optical Lever Method
20	To draw the V-I characteristics of a silicon	To draw the V-I characteristics of a silicon
	controlled rectifier.	controlled rectifier.
21	To find the capacitance and permittivity	To find the capacitance and permittivity of the
	of the given material	given material
22	To find the refractive index of the	To find the refractive index of the material of
	material of given prism using	given prism using spectrometer experimental
	spectrometer experimental set up	set up: 1. Prism. 2. Material : Gun Metal /
		S.S. / Brass / Aluminium 3. VernierScale : 1
		Min / 30 Sec 4. Spectrometer Size:6 inch/ 7
		inch
23	To investigate resonance in forced	To investigate resonance in forced oscillations
	oscillations and to find the spring	and to find the spring constant
	constant	
24	To study the Motion of a Spring and	To study the Motion of a Spring and calculate
	calculate (a) Spring Constant (b) Value of	(a) Spring Constant (b) Value of g and (c)
	g and (c)	Modulus of rigidity.
25	To study the variation of time period	To study the variation of time period with
	with distance between centre of	distance between centre of suspension and
	suspension and centre of gravity for a bar	centre of gravity for a bar pendulum and to
	pendulum and to determine: (i) Radius of	determine: (i) Radius of gyration of the bar
	gyration of the bar about an axis through	about an axis through its C.G. and
	its C.G. and perpendicular to its length.	perpendicular to its length. (ii) The value of g
	(ii) The val	in the laboratory.
26	To verify that fundamental frequency of	To verify that fundamental frequency of
	vibration of a steel bar clamped at one	vibration of a steel bar clamped at one end is
	end is inversely proportional to the	inversely proportional to the square of its
	square of its length and measure the	length and measure the Young's modulus of
	Young's modulus of bar. (Electrically	bar. (Electrically tunning fork complete)
	tunning fork complete)	
27	Wavelength of Diode laser by Michelson-	Wavelength of Diode laser by Michelson-
	interferometer experimental set up	interferometer experimental set up:
		1. Michelson interferometer setup. 2. Base :
		Machined MS base of 6kg with rubber sheet
		attached at bottom to reduce vibration. 3.
		Micrometre(Least count : 0.001 mm Range :
		0-25 mm) 4. Beam Splitter Type : Cubic Size
		(mm) : 15 x 15 x 15 R%/T% : 50 / 50 5. Mirror

		Type : Circular Diameter (mm) : 25 (5 mm
		thick) Second Mirror : Fixed on Beam Splitter.
		6. LASER Type : Diode LASER (Battery
		operated) Wavelength : 650nm.
28	Wavelength of He-Ne laser by diffraction	Wavelength of He-Ne laser by diffraction
	method experimental set up	method experimental set up: 1. A
		comprehensive and self-contained Optics
		System(Optics Bench Dimensions (mm) : L
		1000 x W 50 x H 50). 2. A complete system
		with Light Source, Bench and Sliding stand for
		precise arrangement (Fixed Stand : 2 Nos.
		Sliding Stand : 1 Nos. 3. Diffraction Grating :
		300L / mm or 600L /mm or 15000L / inch. 4.
		Helium Neon LASER Input supply : 230V +/-
		10%, 50Hz Output power : 2mW Wavelength :
		632.8nm Beam diameter : 0.5 mm Beam
		divergence : 1.7 mrad.

Additional Terms & Condition:

- 1. The manufacturer/authorized dealer should submit three purchase order along with satisfactory work completion certificate for similar types of items supplied to other Engineering colleges/organizations.
- 2. All manufacturer/authorized dealer need to mention the make and model no for the item quoted and authorized dealer has to submit the recent valid authorization certificate from the original manufacturer.
- 3. Pre dispatch inspection may be carried out if necessary for certain goods at the manufacturer site.
- 4. At the time of technical evaluation of products, the vendor may be called for the demonstration if required.
- 5. Quotation will be evaluated for the whole package.
- 6. FREE installations and FREE Demonstration at College.
- 7. The manufacturer/authorized dealer should provide catalog/leaflet in support of the quoted product.

FORMAT FOR QUOTATION SUBMISSION

(In letterhead of the supplier with seal)

To:

Date: _____

SI.	Description of	Qty.	Unit	Quoted Unit rate in Rs.	Total Price	Sales tax and other	
No.	goods (with full			(Including Ex Factory price, excise duty, packing and	(A)	taxes payable	
	Specifications)			forwarding, transportation, insurance, other local		In In figures	
				costs incidental to delivery and warranty/ guaranty		%	(B)
				commitments)			
Total Cost							

Gross Total Cost (A+B): Rs. _____

We confirm that the normal commercial warranty/ guarantee of ————— months shall apply to the offered items and we also confirm to agree with terms and conditions as mentioned in the Invitation Letter.

We hereby certify that we have taken steps to ensure that no person acting for us or on our behalf will engage in bribery.

Signature of Supplier

Name: _____

Address: _____

Contact No: _____